
P1: ZBU

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464432 June 12, 2003 18:25 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 2, February 2003 (C© 2003)

Explicit Finitism
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This paper takes the first steps in developing a theory of “explicit finitism” which
puts explicit limits on the size of finite objects. We provide motivation in the “physics
of computation” sense, survey some of the difficulties and describe the appropriate
computing machinery. We introduce the subsetJ of the real numbers that is the central
mathematical object emerging from considerations of explicit finitism, and take the first
steps in studying its properties.
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1. INTRODUCTION

Recently Lloyd (2002) established 10120 bits as an upper bound for the stor-
age capacity of the universe. Mathematicians and computer scientists tend to be
dismissive about such notions of a computationally closed universe, comparing
the issue to one of characterizing the set of functions computable if you are given a
roomful of NAND gates. In this paper we show how the problem can be stated in a
more interesting form, as being about sequencesJi of subsets of the real numbers
tending to a limitJ ⊂ R, and pose some open questions aboutJ.

We assume a background storage of 2512bytes (about 10155bits)—the body of
this paper is devoted to exploring the range of mathematics that can be performed
in this explicitly finiterealm. Our goal is to collect all real numbers accessible to
present and future computers inJ, but there are serious difficulties, both philo-
sophical and technical, in developing a theory that takes the stance that numbers
not computable with a computer with limited (albeit large) amount of storage
are indeed out of reach. On the philosophical side, it is very hard to answer the
charge of arbitrariness: what if we used the number of elementary logical opera-
tions, wouldn’t we obtain a somewhat different constant than the limit based on
considerations of space? Actually, the two numbers are highly similar (as noted by
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Lloyd), but this is more of a statement about our universe than about a mathemat-
ical system: surely, if we can conceive of a system of sizeX we can also conceive
of a system of size 2X.

To clarify matters, we use a convenient means of rigorously defining and
talking about large numbers, the Ackermann function. As usual, we defineA(n, m)
by induction: A(1, m) = 2m, A(n, 1)= 2, A(k+ 1, n+ 1)= A(k, A(k+ 1, n)).
Therefore,A(2, m) = 2m and A(3, m) is a tower of stacked exponentials ofm 2s
(for brevity, we will denote such towers byE∗(m)). In a lecture, Friedman (1999)
proposedA(5, 5) as a “sort of benchmark” for incomprehensibly large numbers.
Here we will describe whyA(4, 4)= E∗(65536) must already be considered to
be outside the arithmetic power of of any civilization restricted to the material
resources of our universe. Note that our baseline, 2512= 229

, is well belowE∗(5).
Let us first consider the product 143· 157. As any third-grade student can tell

you, this is 22451. A student of high school algebra may notice that 143= 150−
7, 157= 150+ 7 so that the formula (a− b)(a+ b) = a2− b2 is applicable, and
may take advantage of this and similar facts, such as 1502 = (15× 10)2 = 225×
100, to compute the result from 22500−49, without going through the tedious steps
of the multiplication algorithm the third-grade student used. Yet at the heart of our
understanding of arithmetic we find the tedious algorithm used by the third grader,
rather than the more sophisticated reasoning used by the high school student, for
the simple reason that the basic algorithm remains usable even in those case where
we find no special properties to help us. In particular, when the numbers to be
multiplied are random, we can only rely on the generic methods. To be sure, there
are better (deeper and more effective) methods for multiplying too large integers
than our third grader is aware of (e.g. based on the Fast Fourier Transform), but
this does not affect the argument inasmuch as these methods are also generic.

Returning toE∗(65536), we can see many ways we can take advantage of
its special form to answer arithmetic questions about it. We may not be able to
actually divide it by 7 and convert the result to decimal notation, but we can be
absolutely certain that if we did so, the 33rd digit of the fractional part would be
5. However, there are many simple questions about this number that we are not in
a position to answer. In base 10, how many digits would it have? The answer is
given by the integer part ofE∗ (65535)· 0.30102999566398. . . , but this in not a
product we can evaluate to the required degree of precision. In fact, it is not trivial
to determine what its first 10 digits are. There may be some clever algorithm to
compute this, but the standard methods break down.

Notice that we do not have the same problem withE∗(5)= 265536: we can
compute with quite ordinary resources that it would have 19728 decimal digits.
For E∗(6) this is a bit more complicated, we would have to compute the base 10
log of 2 to nearly 20k digits, computeE∗(5), and multiply the two. Using fast
multiplication, this is still well within the resources of an ordinary PC: the results
would run to 10 printed pages (assuming 2k characters per page). But forE∗(7), we
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would have to calculate log(2) to 1019728decimal places, and this is well beyond the
material resources of the universe. By the 7th iteration we are already in trouble,
and we would have to do 65536 iterations to get toA(4, 4).

To summarize, it is not the raw size, but rather the information content of a
number that determines its accessibility. The key issue here is randomness: powers
of 2, towers of such powers, and in general the values of the Ackermann function,
are far from random, both in the technical sense of Kolmogorov complexity, and
in the more physical sense of randomness that we will first rely on. Some numbers
x are more accessible to our arithmetic than other numbersy in the sense that
we can establish certain arithmetic statementsD(x) but notD(y). It follows from
a cardinality argument that we must have many numbersz about which nothing
but trivial arithmetic facts, such as 0· z= 0 can be established. The standard
mathematical tools of investigating complexity lack the required resolving power:
even the lowest Turing degree lumps together problems which are solvable, such
as finding the number of digits inE∗(6), and problems which are not, such as
finding the number of digits inE∗(7). Since we are expressly including symbolic
techniques, we need a setup devoted to the manipulation of strings, trees, and
more complex structures of symbols. Once such a setup is defined, there is a finite
number of statesS it can have, and any fixed interpretation of the states can only
have a finite setJ(S) ⊂ R as its image.

2. DEFINING J BY MACHINES

By pointing her browser to http://www.fourmilab.com/hotbits the user can
download about 240 randomly generated bits per second. Whether these bits, gen-
erated by comparing the length of consecutive intervals between ticks of a Geiger
counter, are truly random, is of course a deep philosophical question, but one that
we need not address here. For our purposes, it is sufficient to note that in order to
replicate or predict these bits one would need the resources to simulate our whole
universe, and such resources cannot be found within the universe itself. For the
mathematician, a simple cardinality argument shows the existence of truly ran-
dom (incompressible) bit sequences, but for the more practical-minded reader, the
hotbits setup provides a constructive method, complete with hardware description
and wiring diagrams, for obtaining incompressible sequences.

If we impose an explicit memory limitation, Turing machines and finite trans-
ducers would become equally good computational models, but we need not take
either of these as basic. Our model of computation (see http://www.kornai.com/
Drafts/fathom.html) takes the radical step of incorporating the full set of the reals,
R, in the machine model itself. This means thatJ itself can only be approxi-
mated by real hardware built from finitely many elements, but this is not a serious
problem inasmuch as our goal withJ-machines is to provide an upper bound on
the setJ by an abstract model of computation rather than to actually compute
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things. By adding the reals we accomplish two main goals: enable direct model-
ing of deterministic physical theories (Montague, 1974), and make it possible to
deploy Blum-Shub-Smale complexity theory to analyze the symbolic (as opposed
to numeric) techniques available on the machine.

In all other respects our computing model is a straightforward extrapolation
of what is happening in any modern computer—here we confine ourselves to a
few remarks about memory. To simplify matters, we assume that a cache of 232

bytes (4 gigabytes) is available on chip (currently unrealistic, but easy enough
to simulate). We can think of this cache as the innermost (0th) layer of mem-
ory, composed of registers, whose contents are directly accessible (in a single
cycle) to primitive operations such as addition. At the next (1st) layer, we as-
sume that 264 bytes (16 exabytes) memory is directly addressable—this will be
called thecore. To perform (arithmetic or logical) operations on numbers stored
in the core requires a few CPU cycles for bringing them to the 0th layer, and
some care in programming to make sure still valuable parts of the cache are not
overwritten.

Finally there is an outer (2nd) layer of memory in the 2512 byte range, called
the disk. Since this requires the whole universe, we do not follow the usual as-
sumption that fetching data from this layer can be done in a constant number of
cycles. Rather, we assume that this is limited by the speed of light, so that if mem-
ory is arranged linearly, the time required for reading or writing thenth byte is
proportional ton. If memory is arranged in concentric circles, the time required
is proportional ton1/2, if it is arranged spherically, ton1/3, which is the best we
can do. These nonrandom access characteristics call for a whole set of unusual
memory management techniques.

First, we wish to be able to seed far parts of the disk with colonies of computing
agents, who will use certain parts (local to them, but not to us) as core and cache.
Second, we need to make sure that different colonies, who may themselves be
engaged in their own secondary ornth generational colonization efforts, recognize
different parts of the disk as being already in use, and do not step on it. Third,
we cannot simply assume a generally shared system of coordinates, or a master
plan that each colony will abide by, for the simple reason that a system the size
of the disk cannot be kept noise free. Therefore, allocating a large segment will
actually consume some overhead space to mark the segment as being in active
use, and possibly some constant drain on time as well, for running a process that
defends the segment from corruption by other processes. Finally, note that at this
level of abstraction we do not need to consider parallelism, since all computers
under the control of our civilization can be thought of as being part of the same
largeJ-machine.

The points on the real line which are directly accessible to this kind of com-
puting apparatus are collected in the setJ512. More crude approximations of the
set J are provided byJ0 (no external memory) toJ511, and finer approximations
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Jn for n > 512 are also logically conceivable. In the limit we would obtain all the
Turing-computable numbers, but the key issue is understanding the fractal prop-
erties of the sets leading to the limit. It is important to keep in mind that many
numbers such as 4.5558062. . . that are not directly accessible, may still be sym-
bolically accessible, in this case asπ +√2. It is this kind of symbolic accessibility
which makes it necessary to incorporate the full set of the reals inJ as part of
its hardware: as a benign side effect, we no longer have to worry about countable
models.

What we are interested in is the setJ of explicitly computable numbers,
which is already approximatedfrom aboveby J512. Clearly, any rational whose
numerator and denominator are both sufficiently small (e.g. less than 512 bits) will
be included inJ, but rationals requiring a large amount of storage, e.g. a random
integer composed of 2512 digits, are outsideJ. The same is true for irrationals:
those with a sufficiently compact definition (e.g. as a root of a small polynomial
with small coefficients, or the limit of a simple power series) are included, but
those with large definitional complexity are excluded. Although the numbers inJ
are not all rationals, the situation is in many respects analogous to that found in
floating point hardware, to which we turn now.

In IEEE-754, each number requires 8 bytes: a sign bits, 52 bits for mantissa
M , and 11 bits for the base 2 exponente. Triples (s, m, e) are mapped into reals
by the following interpretation function:i (0, 0, 0)= 0; i (1, m, e) = −i (0, m, e);
i (0, m, e) = 1.m · 2e−1023(0 < e < 2047). Let us collect the numbers that can be
represented in this format in the setI : the largest member ofI is 21024− 2972. For
any real number x with smaller absolute value we define Up(x) as the smallest
number inI above x, Down(X) as the largest number in I below it, and Near(x)
as Up(x) or Down(x) depending on which is closer to x. Let o be one of+, −, ·,
and/, RoundingMode be one of Up, Down, or Near, anda, b ∈ I .

A chip satisfies the IEEE-754 standard if (i) whenevera ◦ b ∈ I the compu-
tation returns this exact value, (ii) when (a ◦ b /∈ I but lies between the smallest
and the largest representable number, the chip returns the number appropriate for
the preset RoundingMode, and (iii) when the result would fall outside the rep-
resentable range the chip signals the overflow just as it signals division by zero.
(We could require separate signals for underflow to zero, but it is easy to see that
if overflow signals are guaranteed we can always structure the computation so
as to avoid silent underflow.) The existence of different rounding modes enables
the chip to perform semantically correct interval analysis: for example in interval
addition we select Down when we compute the left, and Up when we compute the
right end of the result interval, thereby guaranteeing that the true result is always
in the computed interval. It is not hard to see howI (1, 52, 11) would generalize
to I (1, 112, 15) (quad) or even higher precision. For reasonably small values of i
and j I (1, i , j ) approximatesJ from below. In this context, a megabyte is still rea-
sonably small—while nobody actually needs hardware support forI (1, 220, 220)
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“megaprecision” arithmetic, it is clear that this could be emulated on ordinary
hardware at the cost of moving from gigahertz to kilohertz speeds.

3. OPEN PROBLEMS

To some extent, the setJ of numbers computable in this universe is an object of
curiosity, or even an object of religious awe, the same way as Chaitin’sω. However,
it is an object that is defined by our universe, rather than by some arbitrary choice
of encoding or enumeration (see Raatikainen, 1998), and as such deserves some
attention. In this paper we have provided an upper boundJ512 and a lower bound
I (1, m, m) on J, but left essentially all important problems about it open.

It is clear thatJ is symmetrical about the origin, but not closed under addi-
tion, reciprocal, or multiplication. Functions fromJ to itself are not necessarily
computable, not even linear functions with small coefficients. Elementary state-
ments about “true” addition and “rounded” addition are indistinguishable within
the resolution offered byJ, so real numbers donothave a unique description in a
form j + r , where j ∈ J andr is some small remainder term, as was the case in
I (1, i , j ).

J gives rise to a new form of the Berry paradox: what is the first integer that
is excluded from it? Clearly,J was defined by a finite method, and the defini-
tion required much less than 2512 symbols, so aren’t we defining the undefinable
here? The correct response seems to be that there is such a number inN, but
we would need resources greater than what we can actually muster to compute
it. Some science-fictional power, with a great deal more computing muscle, can
compute it.

Is there a limit above whichJ has no members? This is to some extent the
mirror image of the Berry paradox, but the answer is less clear-cut: a lot depends
on the details of the notation we adopt for large numbers. What is clear from the
definition is that random numbers above 2512 are excluded, but large numbers like
A(4, 4) will only be excluded if we strictly identify knowing a number with being
able to compute all its digits (which is, of course, the only viable definition at the
moment).

SinceJ has a fractal-like structure, perhaps the first order of business would be
to establish its dimension: we leave the reader with this challenging open problem.
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sity), Rick McGowan (Unicode Consortium), Doug Merritt (ex-UCB), G´abor Tóth
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